11111	T			CICAL CICA THEFT THEFT
1 $AB = 2\mathbf{b} - 2\mathbf{a}$ or $BA = 2\mathbf{a} - 2\mathbf{b}$		5	M1	for finding AB or BA or MN or NM
$\overrightarrow{MN} = 10\mathbf{a} - \mathbf{b} \text{ or } \overrightarrow{NM} = -10\mathbf{a}$				
1000	10.00			1000 1000 1000
$eg MP = -\mathbf{b} + 2\mathbf{a} + k(2\mathbf{b} - 2\mathbf{a})$	(2a) and $MP = l (10a - b)$		M2	for writing eg MP or PN or AP or
or eg $MP = \mathbf{b} + k(2\mathbf{a} - 2\mathbf{b})$ an	d <i>MP</i> = <i>l</i> (10 a - b)			AM in two different ways in terms of a and b
or eg $PN = 8\mathbf{a} + k(2\mathbf{a} - 2\mathbf{b})$	ווווו			(M1 for writing eg MP or PN or AP)
ln u	lum lum			or AM in one way)
or eg $AP = 8a + k(b - 10a)$	and $AP = l (2\mathbf{b} - 2\mathbf{a})$			ınnı
or eg $AP = -2a + b + k(10a -$	b) and $AP = l$ (2b - 2a)			These may be written as eg PM in place
or eg $AM = k(2\mathbf{b} - 2\mathbf{a}) + l(\mathbf{b} - 2\mathbf{a})$	INNT.			of MP
1.1 1.0 1.1.1 1.1(2.0 2.11)	, 			
eg $2-2k=10\lambda$ and $-1+k$	$=-\lambda$ (from MP 1st)		M1	dep M3 for writing a pair of equations
	unu			using their variables.
or eg $2k = 10\lambda$ and $1 - 2k = -$	λ (from MP 2nd)			MP (1st) leads to $\lambda = \frac{1}{9}, k = \frac{4}{9}$
or eg $8+2k=10\lambda$ and $-2k=$	$-\lambda$ (from PN)			unn
	uum			\overrightarrow{MP} (2nd) leads to $\lambda = \frac{1}{9}, k = \frac{5}{9}$
or eg $8-10k = -2\lambda$ and $k=2$	ZA (Irom AP 1st)			PN leads to $\lambda = \frac{8}{9}, k = \frac{4}{9}$
or eg $-2+10k = -2\lambda$ and 1-	$k = 2\lambda$ (from AP 2nd)			If we leads to $\lambda = \frac{1}{9}, k = \frac{1}{9}$
or eg $-2k-10\lambda = -2$ and $2k$	unur + 2 = 1 (from 4M)			AP (1st) leads to $\lambda = \frac{4}{9}, k = \frac{8}{9}$
or eg $-2k - 10\lambda = -2$ and $2k$	+ 1 (HOIII AM)			uum
				\overrightarrow{AP} (2nd) leads to $\lambda = \frac{4}{9}, k = \frac{1}{9}$
				unur
				AM leads to $\lambda = \frac{1}{9}, k = \frac{4}{9}$
	4:5		A1	cao
				Total 5 marks

2	$OC = 3\mathbf{a} + 4\mathbf{b}$		5	B1	Correct expression for OC
	$ON = t(3\mathbf{a} + 4\mathbf{b})$			M1	Correct expressions for ON
	$ON = 3\mathbf{a} + \mathbf{s}(-3\mathbf{a} + 6\mathbf{b})$			M1	
	$t(3\mathbf{a} + 4\mathbf{b}) = 3\mathbf{a} + s(-3\mathbf{a} + 6\mathbf{b})$				
	$\rightarrow t = 0.6, \ s = 0.4$			A1	t or s value correct
		$ON = 1.8\mathbf{a} + 2.4\mathbf{b}$ oe		A1	e.g. $ON = \frac{3}{5}(3\mathbf{a} + 4\mathbf{b})$
	Alt:				
	$AB = -3\mathbf{a} + 6\mathbf{b}$			B1	Correct expression for AB
	$AN = s(-3\mathbf{a} + 6\mathbf{b})$			M1	Compet commencions for AN
	$AN = -3\mathbf{a} + t(3\mathbf{a} + 4\mathbf{b})$			M1	··· Correct expressions for AN
	$-3\mathbf{a} + t(3\mathbf{a} + 4\mathbf{b}) = s(-3\mathbf{a} + 6\mathbf{b})$				
	$\rightarrow t = 0.6, \ s = 0.4 \rightarrow AN = -1.2a + 2.4b$			A1	t or s value correct
	$ON = 3\mathbf{a} + AN$				
		$ON = 1.8\mathbf{a} + 2.4\mathbf{b}$ oe		Al	e.g. $ON = \frac{3}{5} (3\mathbf{a} + 4\mathbf{b})$
	Alt:				
	$OC = 3\mathbf{a} + 4\mathbf{b}$			B1	Correct expression for OC
	ON: NC = 6: 4 (i.e 3:2)		l	M1	
	$ON = \frac{3}{5}OC$			M2	
		$ON = 1.8\mathbf{a} + 2.4\mathbf{b}$ oe		A1	e.g. $ON = \frac{3}{5}(3\mathbf{a} + 4\mathbf{b})$
					Total 5 marks

5 M1 for a vector equation for \overrightarrow{OP}

Total 5 marks

 $eg \overrightarrow{OP} = n(2\mathbf{a} + 3\mathbf{b})$

3	$PM = -\frac{3}{2}\mathbf{a} - \frac{3}{4}\mathbf{b} + 4\mathbf{a} + \frac{1}{2}(2\mathbf{b} - 4\mathbf{a}) \left(= \frac{1}{2}\mathbf{a} + \frac{1}{4}\mathbf{b} \right)$ $AM = 4\mathbf{a} + \frac{1}{2}(2\mathbf{b} - 4\mathbf{a}) (= 2\mathbf{a} + \mathbf{b})$ $AM = 2\mathbf{b} + \frac{1}{2}(4\mathbf{a} - 2\mathbf{b}) (= 2\mathbf{a} + \mathbf{b})$ $AM = \frac{1}{2}(2\mathbf{b} - 4\mathbf{a}) - 2\mathbf{b} (= -2\mathbf{a} - \mathbf{b})$ $AM = \frac{1}{2}(4\mathbf{a} - 2\mathbf{b}) - 4\mathbf{a} (= -2\mathbf{a} - \mathbf{b})$ $AM = \frac{1}{2}(4\mathbf{a} - 2\mathbf{b}) - 4\mathbf{a} (= -2\mathbf{a} - \mathbf{b})$		3	MI	for finding PM or AM or MA
	$(AP:PM =) \left \frac{3}{2} \mathbf{a} + \frac{3}{4} \mathbf{b} \right : \left \frac{1}{2} \mathbf{a} + \frac{1}{4} \mathbf{b} \right \text{ oe}$ $(AP:AM =) \left \frac{3}{2} \mathbf{a} + \frac{3}{4} \mathbf{b} \right : \left 2\mathbf{a} + \mathbf{b} \right (= 3:4) \text{ oe}$ $(AM:PM =) \left 2\mathbf{a} + \mathbf{b} \right : \left \frac{1}{2} \mathbf{a} + \frac{1}{4} \mathbf{b} \right (= 4:1) \text{ oe}$ $AP = 3PM \text{ oe eg } \frac{3}{2} \mathbf{a} + \frac{3}{4} \mathbf{b} = 3(\frac{1}{2} \mathbf{a} + \frac{1}{4} \mathbf{b}) \text{ oe}$ $AM = \frac{4}{3} AP \text{ oe}$ $AM = 4PM \text{ oe}$			M1	For use of a correct ratio or fraction linking AP and PM or AP and AM or AM and PM (in either order) vectors must be in form $p\mathbf{a} + q\mathbf{b}$
		3:1		A1	
					Total 3 marks

or $\overrightarrow{OP} = 2\mathbf{a} + m(5\mathbf{b} - 2\mathbf{a})$				
or $\overrightarrow{OP} = 5\mathbf{b} + x(2\mathbf{a} - 5\mathbf{b})$				
eg $\overrightarrow{OP} = n(2\mathbf{a} + 3\mathbf{b})$ and $\overrightarrow{OP} = 2\mathbf{a} + m(5\mathbf{b} - 2\mathbf{a})$			M1	2 vector equations for \overrightarrow{OP} that can
or				be used to find \overrightarrow{OP} - must be in
eg $\overrightarrow{OP} = n(2\mathbf{a} + 3\mathbf{b})$ and $\overrightarrow{OP} = 5\mathbf{b} + x(2\mathbf{a} - 5\mathbf{b})$ oe				terms of a and b and a scalar
eg $5m = 3n$ or $m = \frac{3}{5}n$ or $2n = 2 - 2m$ or $n = 1 - m$ oe			M1	Writing one equation in terms of only one scalar eg one of n or m or x etc
and $2-2 \times \frac{3}{5} n = 2n$ or $2 \times \frac{5}{3} m = 2-2m$ oe				
or				
eg $2n = 2x$ or $n = x$ or $3n = 5 - 5x$ oe and $3x = 5 - 5x$ or $3n = 5 - 5n$ oe				
		1	M1	for a correct value for one scalar
eg $m = \frac{3}{8}$ or $n = \frac{5}{8}$ or $x = \frac{5}{8}$ oe			IVII	for a correct value for one scalar
Working is required	$\frac{5}{4}\mathbf{a} + \frac{15}{8}\mathbf{b}$		A1	oe (dep on M1) but terms in a and terms in b should be simplified.
				eg $\frac{1}{8}(10\mathbf{a} + 15\mathbf{b})$ or $\frac{5}{8}(2\mathbf{a} + 3\mathbf{b})$ etc
				Total 5 marks
Alternative method as a vector method not requested				•
Alternative method as a vector method not requested eg $\overrightarrow{OP} = n(2\mathbf{a} + 3\mathbf{b})$		5	M1	for a vector equation for \overrightarrow{OP}
•		5	M1	for a vector equation for \overline{OP}
eg $\overrightarrow{OP} = n(2\mathbf{a} + 3\mathbf{b})$ eg $CP : OP = 3 : 5$ or $CP : CO = 3 : 8$ or		5	M1 M2	for a vector equation for \overrightarrow{OP}
eg $\overrightarrow{OP} = n(2\mathbf{a} + 3\mathbf{b})$ eg $CP : OP = 3 : 5$ or $CP : CO = 3 : 8$ or		5		<u> </u>
$\operatorname{eg} \overline{OP} = n(2\mathbf{a} + 3\mathbf{b})$		5		for a correct ratio for two sides in triangle <i>ACP</i> and triangle <i>BOP</i> that
eg $\overrightarrow{OP} = n(2\mathbf{a} + 3\mathbf{b})$ eg $CP : OP = 3 : 5$ or $CP : CO = 3 : 8$ or		5		for a correct ratio for two sides in
eg $\overrightarrow{OP} = n(2\mathbf{a} + 3\mathbf{b})$ $eg CP : OP = 3 : 5 \text{ or } CP : CO = 3 : 8 \text{ or}$ $\frac{CP}{OP} = \frac{3}{5} \text{ or } \frac{CP}{CO} = \frac{3}{8} \text{ oe}$ $\overrightarrow{OP} = \frac{5}{8} \overrightarrow{OC} \text{ or } n = \frac{5}{8}$		5		for a correct ratio for two sides in triangle ACP and triangle BOP that help to find \overrightarrow{OP} as a fraction of \overrightarrow{OC}
eg $\overrightarrow{OP} = n(2\mathbf{a} + 3\mathbf{b})$ $eg CP : OP = 3 : 5 \text{ or } CP : CO = 3 : 8 \text{ or}$ $\frac{CP}{OP} = \frac{3}{5} \text{ or } \frac{CP}{CO} = \frac{3}{8} \text{ oe}$	$\frac{5}{4}\mathbf{a} + \frac{15}{8}\mathbf{b}$	5	M2	for a correct ratio for two sides in triangle ACP and triangle BOP that help to find \overrightarrow{OP} as a fraction of \overrightarrow{OC}

5	e.g. $\binom{5}{3} - \binom{-2}{4}$ or $\binom{5}{3} + \binom{2}{-4}$		2	M1	or for $\begin{pmatrix} 7 \\ a \end{pmatrix}$ where $a \neq -1$ or $\begin{pmatrix} b \\ -1 \end{pmatrix}$ where $b \neq 7$
		$\begin{pmatrix} 7 \\ -1 \end{pmatrix}$		A1	
					Total 2 marks

6	$\overrightarrow{AB} = 2\mathbf{b} - 2\mathbf{a}$ oe or $\overrightarrow{BA} = 2\mathbf{a} - 2\mathbf{b}$ oe or $\overrightarrow{AM} = \mathbf{b} - \mathbf{a}$ oe or $\overrightarrow{MA} = \mathbf{a} - \mathbf{b}$ oe		6	M1	for finding \overrightarrow{AB} or \overrightarrow{BA} or
	or $\overrightarrow{BM} = \mathbf{b} - \mathbf{a}$ oe or $\overrightarrow{MB} = \mathbf{a} - \mathbf{b}$ oe				\overrightarrow{AM} or \overrightarrow{MA} or \overrightarrow{BM}
					or \overline{MB}
	e.g. $\overrightarrow{OM} = 2\mathbf{a} + (\mathbf{b} - \mathbf{a}) (= \mathbf{a} + \mathbf{b})$ oe or $\overrightarrow{MO} = (\mathbf{b} - \mathbf{a}) - 2\mathbf{b} (= -\mathbf{a} - \mathbf{b})$ oe			M1	for finding \overrightarrow{OM} or \overrightarrow{MO}
	or $\overline{AN} = \frac{4}{3}\mathbf{b} - 2\mathbf{a}$ oe or $\overline{NA} = 2\mathbf{a} - \frac{4}{3}\mathbf{b}$ oe				or \overrightarrow{AN} or \overrightarrow{NA}
	e.g. $\overrightarrow{OP} = 2\mathbf{a} + \lambda \left(\frac{4}{3}\mathbf{b} - 2\mathbf{a}\right)$ oe or $\overrightarrow{OP} = \frac{4}{3}\mathbf{b} + \lambda \left(2\mathbf{a} - \frac{4}{3}\mathbf{b}\right)$ oe			M1	for finding \overrightarrow{OP} or \overrightarrow{PO} or \overrightarrow{MP} or \overrightarrow{PM}
	or $\overrightarrow{OP} = \mu(\mathbf{a} + \mathbf{b})$ oe OR $\overrightarrow{MP} = \mathbf{a} - \mathbf{b} + k\left(\frac{4}{3}\mathbf{b} - 2\mathbf{a}\right)$ oe				
	or $\overrightarrow{MP} = \mathbf{b} - \mathbf{a} - \frac{2}{3}\mathbf{b} + k\left(2\mathbf{a} - \frac{4}{3}\mathbf{b}\right)$ oe or $\overrightarrow{MP} = t\left(-\mathbf{a} - \mathbf{b}\right)$ oe				
	e.g. $2\mathbf{a} + \lambda \left(\frac{4}{3}\mathbf{b} - 2\mathbf{a}\right) = \mu(\mathbf{a} + \mathbf{b})$ oe or $\frac{4}{3}\mathbf{b} + \lambda \left(2\mathbf{a} - \frac{4}{3}\mathbf{b}\right) = \mu(\mathbf{a} + \mathbf{b})$ oe			M1	for setting up an equation for \overrightarrow{OP} or \overrightarrow{MP}
	or $\mathbf{a} - \mathbf{b} + k \left(\frac{4}{3} \mathbf{b} - 2 \mathbf{a} \right) = t \left(-\mathbf{a} - \mathbf{b} \right)$ oe or				
	$\mathbf{b} - \mathbf{a} - \frac{2}{3}\mathbf{b} + k\left(2\mathbf{a} - \frac{4}{3}\mathbf{b}\right) = t\left(-\mathbf{a} - \mathbf{b}\right)$ oe				
,	$\mu = \frac{4}{5}$ or $t = \frac{1}{5}$			M1	for finding μ or t for
	$\mu - \frac{1}{5}$ or $i - \frac{1}{5}$				either $\overrightarrow{OP} = \mu \overrightarrow{OM}$
					or $\overrightarrow{MP} = t\overrightarrow{MO}$
		4:1		A1	cao (dep on M3)
					Total 6 marks

7	eg $\overline{AK} = \lambda \mathbf{a}$ $\overline{KB} = (1 - \lambda)\mathbf{a}$ $\overline{CL} = -\mu \mathbf{a}$ $\overline{DL} = (1 - \mu)\mathbf{a}$	eg $\overline{AK} = \frac{1}{2}\mu \mathbf{a}$ $\overline{KB} = (1 - \frac{1}{2}\mu)\mathbf{a}$ $\overline{CL} = -2\lambda \mathbf{a}$ $\overline{DL} = (1 - 2\lambda)\mathbf{a}$	SEE NEXT PAGE FOR MISREAD	5	M1	for correctly using the ratio to form an expression for a vector passing through K or L could be in terms of λ or μ \overline{AK} or \overline{KA} , \overline{KB} or \overline{BK} , \overline{CL} or \overline{LC} , \overline{DL} or \overline{LD} (may be seen as part of another expression)
	eg $\overline{KL} = -\lambda \mathbf{a} + \mathbf{b} + (1 - \mu)\mathbf{a}$ or $= (1 - \lambda - \mu)\mathbf{a} + \mathbf{b}$ $\overline{LM} = (\mu - 1)\mathbf{a} + 0.5\mathbf{b}$ $\overline{KM} = -\lambda \mathbf{a} + \mathbf{b} + 0.5\mathbf{b} (= -\lambda \mathbf{a} + 1.5\mathbf{b})$	$ \frac{\operatorname{eg} \overline{KL} = \mathbf{b} + (1 - \frac{3}{2}\mu)\mathbf{a} \text{ or} }{KL} = \mathbf{b} + (1 - 3\lambda)\mathbf{a} \overline{LM} = (2\lambda - 1)\mathbf{a} + \frac{1}{2}\mathbf{b} \text{ or} \overline{KM} = -\lambda \mathbf{a} + \frac{3}{2}\mathbf{b} \text{ or} $			M1	for finding an expression in λ and/or μ for one of \overline{KL} (or \overline{LK}), \overline{LM} (or \overline{ML}), \overline{KM} (or \overline{MK}) [If this mark is awarded it assumes the first M1]
	Two of the above – may have used $2\lambda = \mu$ May be simplified or not – so may have bra	•			M1	for finding an expression in λ or μ for two of the following: \overline{KL} (or \overline{LK}), \overline{LM} (or \overline{ML}), or \overline{KM} (or \overline{MK})
	eg using $\overline{KM} = -\lambda \mathbf{a} + 1.5\mathbf{b}$ and $\overline{LM} = (2.5)$ $\overline{LM} = x\overline{KM}$ gives $\frac{-\lambda x}{2\lambda - 1} = \frac{1.5x}{0.5} \Rightarrow 3$	-	$\lambda = \frac{3}{7} \text{ or}$ $\mu = \frac{6}{7}$		A1	dep on M2 for one value correct or both values but written the wrong way round $(\mu = \frac{3}{7} \lambda = \frac{6}{7})$
			$\lambda = \frac{3}{7} \&$ $\mu = \frac{6}{7}$		A1	dep on M2 for both values Total 5 marks

7	$ \frac{1 + \mu}{DL} = \left(\frac{1}{1 + \mu}\right) \mathbf{a} $ $ eg \overline{KL} = \left(\frac{-\lambda}{\lambda + 1}\right) \mathbf{a} + \mathbf{b} + \left(\frac{1}{1 + \mu}\right) \mathbf{a} \text{or} $ $ \overline{LM} = \left(\frac{-1}{1 + \mu}\right) \mathbf{a} + 0.5\mathbf{b} $	$\frac{\operatorname{eg}}{AK} = \left(\frac{\frac{1}{2}\mu}{\frac{1}{2}\mu+1}\right) \mathbf{a} \left(= \left(\frac{\mu}{\mu+2}\right) \mathbf{a} \right)$ $\overline{KB} = \left(\frac{1}{\frac{1}{2}\mu+1}\right) \mathbf{a} \left(= \left(\frac{2}{\mu+2}\right) \mathbf{a} \right)$ $\overline{CL} = \left(\frac{-2\lambda}{1+2\lambda}\right) \mathbf{a}$ $\overline{DL} = \left(\frac{1}{1+2\lambda}\right) \mathbf{a}$ eg $\overline{KL} = \left(\frac{-\frac{1}{2}\mu}{\frac{1}{2}\mu+1}\right) \mathbf{a} + \mathbf{b} + \left(\frac{1}{1+\mu}\right) \mathbf{a}$ $\overline{LM} = \left(\frac{-1}{1+2\lambda}\right) \mathbf{a} + \frac{1}{2}\mathbf{b} \text{ or}$	MISREAD $ \overrightarrow{AK}: \overrightarrow{KB} = \lambda:1 $ and $ \overrightarrow{CL}: \overrightarrow{LD} = \mu:1 $	MI	For using the ratio to form an expression for a vector passing through K or L could be in terms of λ or μ \overline{AK} or \overline{KA} , \overline{KB} or \overline{BK} , \overline{CL} or \overline{LC} , \overline{DL} or \overline{LD} (may be seen as part of another expression) for finding an expression in λ and/or μ using the above misread for one of \overline{KL} (or \overline{LK}), \overline{LM} (or \overline{ML}), \overline{KM} (or \overline{MK}) [If this mark is awarded it assumes the first M1]
	$\overline{KM} = \left(\frac{-\lambda}{1+\lambda}\right)\mathbf{a} + \frac{3}{2}\mathbf{b} \text{oe}$	$\overline{KM} = \left(\frac{-\frac{1}{2}\mu}{\frac{1}{2}\mu + 1}\right)\mathbf{a} + \frac{3}{2}\mathbf{b} \text{oe}$			
	Two of the above – may have used $2\lambda = \mu$	to write all in one of λ or μ		M1	for finding an expression in λ or μ for
	May be simplified or not – so may have bra				two of \overrightarrow{KL} (or \overrightarrow{LK}), \overrightarrow{LM} (or \overrightarrow{ML}), \overrightarrow{KM} (or \overrightarrow{MK})
	(Giving answers of $\lambda = 0.5(1+\sqrt{7})$, $\mu =$	$1+\sqrt{7}$)			A MAXIMUM OF 3 MARKS CAN BE AWARDED FOR THIS MISREAD

8	$\overrightarrow{OP} = 4\mathbf{a} + 2\mathbf{a} + 8\mathbf{b} (= 6\mathbf{a} + 8\mathbf{b})$ oe OR $\overrightarrow{PO} = -6\mathbf{a} - 8\mathbf{b}$ oe or		5	M1	oe for one of \overrightarrow{OP} or \overrightarrow{PO} or \overrightarrow{AB} or \overrightarrow{BA} or \overrightarrow{BP} or \overrightarrow{PB}
	$\overrightarrow{AB} = 6\mathbf{b} - 4\mathbf{a}$ oe OR $\overrightarrow{BA} = 4\mathbf{a} - 6\mathbf{b}$ oe or				(may be seen as part of another vector calculation)
	$\overrightarrow{BP} = 6\mathbf{a} + 2\mathbf{b}$ oe OR $\overrightarrow{PB} = -6\mathbf{a} - 2\mathbf{b}$ oe				
	$\overrightarrow{OQ} = 4\mathbf{a} + \lambda(6\mathbf{b} - 4\mathbf{a})$ oe OR $6\mathbf{b} + \mu(4\mathbf{a} - 6\mathbf{b})$ oe OR $x(6\mathbf{a} + 8\mathbf{b})$ oe			M1	for one of \overrightarrow{OQ} or \overrightarrow{QO} or \overrightarrow{BQ} or \overrightarrow{QB} or
	or				\overrightarrow{AQ} or \overrightarrow{QA} or \overrightarrow{QP} or \overrightarrow{PQ}
	$\overrightarrow{BQ} = \mu(4\mathbf{a} - 6\mathbf{b})$ oe OR $-6\mathbf{b} + \lambda(6\mathbf{a} + 8\mathbf{b})$ oe OR $4\mathbf{a} - 6\mathbf{b} + x(6\mathbf{b} - 4\mathbf{a})$ oe				
	Or				
	$\overline{AQ} = y(6\mathbf{b} - 4\mathbf{a})$ oe OR $-4\mathbf{a} + x(6\mathbf{a} + 8\mathbf{b})$ oe OR $6\mathbf{b} - 4\mathbf{a} + \mu(4\mathbf{a} - 6\mathbf{b})$ oe OR				
	$2\mathbf{a} + 8\mathbf{b} + m(6\mathbf{a} + 8\mathbf{b}) \circ \mathbf{e}$				
	or				
	$\overline{QP} = \lambda(6\mathbf{a} + 8\mathbf{b})$ oe OR $\mu(4\mathbf{a} - 6\mathbf{b}) + 2\mathbf{a} + 8\mathbf{b}$ oe				
				M1	for a second correct expression for the same vector OR
					for two correct expressions for parallel vectors eg 2 of
					\overrightarrow{OQ} , \overrightarrow{OP} , \overrightarrow{OP} oe AND using ratios to form an
					equation in one variable that can lead to a solution eg
					$\overrightarrow{OQ} = 4\mathbf{a} + k(6\mathbf{b} - 4\mathbf{a})$ and $\overrightarrow{QP} = 2\mathbf{a} + 8\mathbf{b} - k(6\mathbf{b} - 4\mathbf{a})$
					and $\frac{4-4k}{2+4k} = \frac{6k}{8-6k}$
					$\frac{1}{2+4k} - \frac{1}{8-6k}$
	eg $\lambda = \frac{8}{17}$ or $\mu = \frac{9}{17}$ or $AQ:QB = \frac{4x}{3}: \frac{3x}{2}$ oe			A1	oe
	1, 1, U L	8:9		A1	oe

9	$(\overrightarrow{ON} =)\lambda(\mathbf{a} + \mathbf{b})(= \lambda \mathbf{a} + \lambda \mathbf{b})$ or			5	M1 for finding a vector for \overrightarrow{ON} or \overrightarrow{NY}	
	$(\overrightarrow{NY} =)(1-\lambda)(\mathbf{a}+\mathbf{b})(=(1-\lambda)\mathbf{a}+(1-\lambda)\mathbf{b})$				or \overrightarrow{NO} or \overrightarrow{YN} in terms a and b and using λ oe (can be embedded)	
	$(\overrightarrow{MN} = \overrightarrow{MO} + \overrightarrow{ON} =) -0.5\mathbf{a} + \lambda \mathbf{a} + \lambda \mathbf{b} (= (\lambda - 1))$	$(0.5)\mathbf{a} + \lambda\mathbf{b}$) or $(\overrightarrow{MZ} = \overrightarrow{MO} + \overrightarrow{OZ} =) - 0.5\mathbf{a} + 3\mathbf{b}$			M1 for finding a vector for \overrightarrow{MN} or \overrightarrow{NM}	
	$\mathbf{or}(\overrightarrow{MN} = \overrightarrow{MX} + \overrightarrow{XY} + \overrightarrow{YN} =)0.5\mathbf{a} + \mathbf{b} + (\lambda - 1)$	$(\mathbf{a} + \mathbf{b})(= (\lambda - 0.5)\mathbf{a} + \lambda \mathbf{b})$			or \overrightarrow{MZ} or \overrightarrow{ZM}	
	$(\overrightarrow{MN} = \mu \overrightarrow{MZ} =) \mu (-0.5\mathbf{a} + 3\mathbf{b}) (= -0.5\mu \mathbf{a} + 3\mu \mathbf{a})$	(db) or			M1 for finding a vector for \overrightarrow{MN} or \overrightarrow{ON}	
	$(\overrightarrow{ON} = \overrightarrow{OM} + \overrightarrow{MN} =)0.5\mathbf{a} + \mu(-0.5\mathbf{a} + 3\mathbf{b})(=0.5\mathbf{a} + 3\mathbf{b})$	$(0.5-0.5\mu)$ a + 3 μ b) or			or NY or NM or NO or YN using	
	$(\overrightarrow{NY} = \overrightarrow{NM} + \overrightarrow{MX} + \overrightarrow{XY} =) - \mu(-0.5\mathbf{a} + 3\mathbf{b}) +$	$0.5\mathbf{a} + \mathbf{b} = (0.5 + 0.5\mu)\mathbf{a} + (1 - 3\mu)\mathbf{b}$			another variable e.g. μ oe	
	$-0.5\mu = -0.5 + \lambda$ oe	$1 - \lambda = 0.5 \mu + 0.5 \text{oe}$			M1 for setting up two simultaneous	
	$3\mu = \lambda$ oe	$1-\lambda=1-3\mu$ oe			equations using the components of a and b for \overrightarrow{MN} or \overrightarrow{ON} or \overrightarrow{NY} oe	
-			3		2	
			$\frac{3}{7}$		A1 (allow $\frac{3}{7}$ = 0.42(8571) to 2 sf	
					truncated or rounded)	
					Total 5 marks	

9 ALT	$(\overrightarrow{ON} =)\lambda(\mathbf{a} + \mathbf{b})(= \lambda \mathbf{a} + \lambda \mathbf{b}) \text{ or } (\overrightarrow{NY} =)(1 - \lambda)(\mathbf{a} + \mathbf{b})(= (1 - \lambda)\mathbf{a} + (1 - \lambda)\mathbf{b})$		5	M1 for finding a vector for \overrightarrow{ON} or \overrightarrow{NY} or \overrightarrow{NO} or \overrightarrow{NV} in terms a and b and using λ oe
	$(\overrightarrow{MN} = \overrightarrow{MO} + \overrightarrow{ON} =) -0.5\mathbf{a} + \lambda \mathbf{a} + \lambda \mathbf{b} (= (\lambda - 0.5)\mathbf{a} + \lambda \mathbf{b}) \text{ or}$ $(\overrightarrow{MN} = \overrightarrow{MX} + \overrightarrow{XY} + \overrightarrow{YN} =) 0.5\mathbf{a} + \mathbf{b} + (\lambda - 1)(\mathbf{a} + \mathbf{b}) (= (\lambda - 0.5)\mathbf{a} + \lambda \mathbf{b})$			M1 for finding a vector for \overrightarrow{MN} or \overrightarrow{NM} in terms a and b and using λ oe
	$(\overrightarrow{NZ} = \overrightarrow{NO} + \overrightarrow{OZ} =) - \lambda(\mathbf{a} + \mathbf{b}) + 3\mathbf{b}(= -\lambda \mathbf{a} + (3 - \lambda)\mathbf{b}) \text{ or}$ $(\overrightarrow{NZ} = \overrightarrow{NY} + \overrightarrow{YZ} =)(1 - \lambda)(\mathbf{a} + \mathbf{b}) - \mathbf{b} - \mathbf{a} + 3\mathbf{b}(= -\lambda \mathbf{a} + (3 - \lambda)\mathbf{b})$			M1 for finding a vector for \overrightarrow{NZ} or \overrightarrow{ZN} in terms a and b and using λ oe
	$\frac{\lambda - 0.5}{-\lambda} = \frac{\lambda}{3 - \lambda}$ oe			M1 for setting up an equation using the components of \overrightarrow{MN} and \overrightarrow{NZ} oe
		$\frac{3}{7}$		A1 (allow $\frac{3}{7} = 0.42(8571)$ to 2 sf truncated or
				rounded) Total 5 marks

10	eg $\overrightarrow{ON} = 8\mathbf{a} + \frac{1}{2}(6\mathbf{b} - 8\mathbf{a})(=3\mathbf{b} + 4\mathbf{a})$ or $\overrightarrow{ON} = 6\mathbf{b} + \frac{1}{2}(-6\mathbf{b} + 8\mathbf{a})(=3\mathbf{b} + 4\mathbf{a})$		5	M1	a correct expression for \overrightarrow{ON}
	or $\overrightarrow{NO} = \frac{1}{2}(8\mathbf{a} - 6\mathbf{b}) - 8\mathbf{a} (= -4\mathbf{a} - 3\mathbf{b})$ or $\overrightarrow{NO} = -6\mathbf{b} + \frac{1}{2}(6\mathbf{b} - 8\mathbf{a}) (= -3\mathbf{b} - 4\mathbf{a})$				or \overrightarrow{NO} or \overrightarrow{AM} or \overrightarrow{MA}
	or $\overrightarrow{AM} = -8\mathbf{a} + \frac{1}{3}(6\mathbf{b})(=2\mathbf{b} - 8\mathbf{a})$ or $\overrightarrow{AM} = -8\mathbf{a} + 6\mathbf{b} - \frac{2}{3}(6\mathbf{b})(=2\mathbf{b} - 8\mathbf{a})$				
	or $\overline{MA} = 8\mathbf{a} - \frac{1}{3}(6\mathbf{b})(= 8\mathbf{a} - 2\mathbf{b})$ or $\overline{MA} = \frac{2}{3}(6\mathbf{b}) + 8\mathbf{a} - 6\mathbf{b}(= 8\mathbf{a} - 2\mathbf{b})$				
	$\overrightarrow{OP} = \mu(3\mathbf{b} + 4\mathbf{a})$ and one of			M2	oe Office
	$\overrightarrow{OP} = 8\mathbf{a} + x(2\mathbf{b} - 8\mathbf{a}) \ (= (8 - 8x)\mathbf{a} + 2x\mathbf{b}) \text{ or}$				(M1 for one correct expression for \overrightarrow{OP})
	$\overrightarrow{OP} = 2\mathbf{b} + y(8\mathbf{a} - 2\mathbf{b})(= (2 - 2y)\mathbf{b} + 8y\mathbf{a})$				(where μ , x , y are scalars)
	$\frac{eg}{3} = \frac{8y}{2 - 2y} \text{ or } \frac{4}{3} = \frac{8 - 8x}{2x} \text{ oe or } 3\mu = 2x \text{ and } 4\mu = 8 - 8x$ or $3\mu = 2 - 2y$ and $4\mu = 8y$			M1	A correct expression to find the position of P along ON or two correct simultaneous equations coming from the expressions for \overrightarrow{OP}
		$2\mathbf{a} + \frac{3}{2}\mathbf{b}$		A1	dep on M3, oe eg 2a+1.5b
					Total 5 marks

11 (a)	$\overrightarrow{ON} = \mathbf{b} + \frac{2}{5}(\mathbf{a} - \mathbf{b})$ oe or $\overrightarrow{ON} = \mathbf{a} + \frac{3}{5}(\mathbf{b} - \mathbf{a})$ oe		2	MI
	Correct answer scores full marks (unless from obvious incorrect working)	$\frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{b}$		A1 oe eg $\frac{1}{5}(2\mathbf{a} + 3\mathbf{b})$ but must be one term in \mathbf{a} and one in \mathbf{b}

12	$ = g - \begin{pmatrix} -5 \\ 4 \end{pmatrix} + \begin{pmatrix} 9 \\ 1 \end{pmatrix} $ or $\begin{pmatrix} 5 \\ -4 \end{pmatrix} + \begin{pmatrix} 9 \\ 1 \end{pmatrix} $ or $\begin{pmatrix} 14 \\ a \end{pmatrix} $ $a \neq -3$ or $\begin{pmatrix} b \\ -3 \end{pmatrix} $ $b \neq 14$		2	$\begin{array}{ c c }\hline M1 & \text{or an answer of} \begin{pmatrix} -14 \\ 3 \end{pmatrix} \end{array}$
	Correct answer scores full marks (unless from obvious incorrect working)	$\begin{pmatrix} 14 \\ -3 \end{pmatrix}$		Al
				Total 2 marks

13	e.g.		5	M1
	$(\overline{AB} =)2\mathbf{b} - 2\mathbf{a}$ oe or			
	$(\overline{BA} =)2\mathbf{a} - 2\mathbf{b}$ oe or			
	$(\overline{BD} =)2(2\mathbf{b} - 2\mathbf{a})(=4\mathbf{b} - 4\mathbf{a})$ oe or			
	$(\overline{AD} = 3(2\mathbf{b} - 2\mathbf{a})(=6\mathbf{b} - 6\mathbf{a})$ oe			
	e.g. $(\overrightarrow{OE} =)2\mathbf{b} + 2(2\mathbf{b} - 2\mathbf{a}) + 7\mathbf{a} + 3\mathbf{b} (= 3\mathbf{a} + 9\mathbf{b})$ oe or			M2 for 2 correct paths seen M1 for 1 correct path seen
	$(\overrightarrow{OC} = 2\mathbf{a} + \lambda(2\mathbf{b} - 2\mathbf{a}) = (2 - 2\lambda)\mathbf{a} + 2\lambda\mathbf{b} \text{ oe or } 2\mathbf{b} + \lambda(2\mathbf{a} - 2\mathbf{b})\text{ or}$ $(\overrightarrow{CE} = 2(2\mathbf{b} - 2\mathbf{a}) - \lambda(2\mathbf{b} - 2\mathbf{a}) + 2(2\mathbf{b} - 2\mathbf{a}) + 7\mathbf{a} + 3\mathbf{b} = (1 + 2\lambda)\mathbf{a} + (9 - 2\lambda)\mathbf{b}$			Any correct path for OC passing through A or B involving a variable
	e.g. $\frac{2-2\lambda}{2\lambda} = \frac{1+2\lambda}{9-2\lambda} \text{ oe or } \frac{2-2\lambda}{2\lambda} = \frac{3}{9} \text{ oe or } \frac{(1+2\lambda)}{(9-2\lambda)} = \frac{1}{3} \text{ oe or } \lambda = \frac{3}{4}$ or $(2-2\lambda)\mathbf{a} + 2\lambda\mathbf{b} = \mu(3\mathbf{a} + 9\mathbf{b}) \text{ or } \lambda = \frac{3}{4} \text{ or } \mu = \frac{1}{6}$			M1 for comparing coefficients of a and b for (OC and CE) or (OC and OE) or (CE and OE)
	or $2\mathbf{b} + \lambda(2\mathbf{a} - 2\mathbf{b}) = \mu(3\mathbf{a} + 9\mathbf{b})$ or $\lambda = \frac{1}{4}$ or $\mu = \frac{5}{6}$			OC is a multiple of OE Two different paths for OC
		1:5		A1 dep M2 oe e.g 2 : 10
	Working required			Total 5 mark

13	e.g.		5	M1
ALT	$(\overline{AB} =) 2\mathbf{b} - 2\mathbf{a}$ oe or			
	$(\overrightarrow{BA} =)2\mathbf{a} - 2\mathbf{b}$ oe or			
	$(\overrightarrow{BD} =)2(2\mathbf{b} - 2\mathbf{a})(=4\mathbf{b} - 4\mathbf{a})$ oe or			
	$(\overrightarrow{AD} = 3(2\mathbf{b} - 2\mathbf{a})(= 6\mathbf{b} - 6\mathbf{a})$ oe			
	e.g.			M1
	$(\overrightarrow{OE} = 2\mathbf{b} + 2(2\mathbf{b} - 2\mathbf{a}) + 7\mathbf{a} + 3\mathbf{b} = 3\mathbf{a} + 9\mathbf{b})$ oe			
	e.g.			M1
	$(\overrightarrow{AE} =)2\mathbf{b} - 2\mathbf{a} + 2(2\mathbf{b} - 2\mathbf{a}) + 7\mathbf{a} + 3\mathbf{b}(= \mathbf{a} + 9\mathbf{b})$ oe			
	$\left[\overline{AE} = \lambda \overline{AD} + \mu \overline{OE} \right]$			M1
	$\mathbf{a} + 9\mathbf{b} = \lambda (6\mathbf{b} - 6\mathbf{a}) + \mu (3\mathbf{a} + 9\mathbf{b})$ oe or			
	$\mathbf{a} + 9\mathbf{b} = \lambda (6\mathbf{b} - 6\mathbf{a}) + \mu (3\mathbf{a} + 9\mathbf{b})$ oe or $1 = -6\lambda + 3\mu$ oe and $9 = 6\lambda + 9\mu$ oe or or $\lambda = \frac{1}{4}$ or $\mu = \frac{5}{6}$			
		1:5		A1 dep on M2 oe e.g 2 : 10
	Working required			Total 5 marks

14	(a)		- 2a+b	1	B1	oe
	(b)	egn unm $OP = \mathbf{a} + y(-\mathbf{a} + 6\mathbf{b})$ and $OP = 2\mathbf{a} + x("-2\mathbf{a} + \mathbf{b}")$ unm $AP = -\mathbf{a} + y(-\mathbf{a} + 6\mathbf{b})$ and $AP = x("-2\mathbf{a} + \mathbf{b}")$ unm $AB = x("-2\mathbf{a} + \mathbf{b}") + y(-\mathbf{a} + 6\mathbf{b})$ and $AB = -2\mathbf{a} + 6\mathbf{b}$ unm AB		4	M2	the from (a), for writing eg <i>OP</i> or <i>AP</i> or und (a). For writing eg <i>OP</i> or <i>AP</i> or <i>AB</i> or <i>NP</i> or <i>MP</i> or similar in two different ways in terms of a and b und (MI for writing eg <i>OP</i> or <i>AP</i> or <i>AB</i> or <i>NP</i> or <i>MP</i> or similar in one way in terms of a and b) These may be written as eg <i>PO</i> in place of <i>OP</i>
		eg $x = 6y \text{ and } 2 - 2x = 1 - y \text{ (from } OP)$ $x = 6y \text{ and } -2x = -1 - y \text{ (from } AP)$ $6 = x + 6y \text{ and } -2 = -2x - y \text{ (from } AB)$ $2x = 1 - y \text{ and } -x = -1 + 6y \text{ (from } NP)$ $-x = 1 - 2y \text{ and } 6x = y \text{ (from } \overline{MP})$			M1	dep M2 for writing a pair of equations using their variables OP leads to $x = \frac{6}{11}, y = \frac{1}{11}$ und AP leads to $x = \frac{6}{11}, y = \frac{1}{11}$ AB leads to $x = \frac{6}{11}, y = \frac{10}{11}$ UND leads to $x = \frac{5}{11}, y = \frac{1}{11}$ \overline{MP} leads to $x = \frac{1}{11}, y = \frac{6}{11}$
	,	Vector method required	6:5		A1	dep on M2, oe eg $\frac{6}{11} : \frac{5}{11}$
	-					Total 5 marks